JPEG Quality Transcoding Using Neural Networks Trained with a Perceptual Error Measure
نویسندگان
چکیده
منابع مشابه
JPEG Quality Transcoding Using Neural Networks Trained With a Perceptual Error Measure
A JPEG Quality Transcoder (JQT) converts a JPEG image file that was encoded with low image quality to a larger JPEG image file with reduced visual artifacts, without access to the original uncompressed image. In this article, we describe technology for JQT design that takes a pattern recognition approach to the problem, using a database of images to train statistical models of the artifacts int...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
JPEG Compression Metric as a Quality-Aware Image Transcoding
Transcoding is becoming a preferred technique to tailor multimedia objects for delivery across variable network bandwidth and for storage and display on the destination device. This paper presents techniques to quantify the quality-versus-size tradeoff characteristics for transcoding JPEG images. We analyze the characteristics of images available in typical Web sites and explore how we can perf...
متن کاملLossless JPEG transcoding
Proposed approach The goal of this project is to modify an existing open-source JPEG implementation to be able to perform lossless transcoding. The problem will be restricted to image transcoding with the same resolution and quality factor on source and destination. To achieve this, the decoder will: 1) Decode the image. 2) Calculate the quantized DCT coefficients of the blocks of the decoded i...
متن کاملNo-Reference Perceptual Quality Assessment of JPEG Images Using General Regression Neural Network
No-reference perceptual quality assessment for JPEG images in real time is a critical requirement for some applications, such as in-service visual quality monitoring, where original information can not be available. This paper proposes a no-reference perceptual quality-assessment method based on a general regression neural network (GRNN). The three visual features of artifacts introduced in JPE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 1999
ISSN: 0899-7667,1530-888X
DOI: 10.1162/089976699300016917